Актуальные проблемы в машиностроении. 2016. №3
Инновационные технологии
в машиностроении
____________________________________________________________________
165
3. Surface hardening of steels with carbon by non-vacuum electron-beam processing / I.A.
Bataev, A.A. Bataev, A.A. Losinskaya, R.A. Dostovalov, A.I. Popelyukh, E.A. Drobyaz, M.G.
Golkovskii // Surface and Coatings Technology. – 2014. – Vol. 242. – C. 164–169.
4. Atmospheric electron-beam surface alloying of titanium with tantalum / I.A. Bataev, A.A.
Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev, M.G.
Golkovski // Materials Science and Engineering A. – 2013. – Vol. 578. – P. 310–317.
5. Вневакуумная электронно-лучевая наплавка углеродсодержащих порошковых
смесей на заготовки из титана ВТ1-01 / О.Г. Ленивцева, И.А. Батаев, Н.С. Белоусова, Е.Д.
Головин, Т.А. Зимоглядова // Обработка металлов (технология, оборудование, инструменты).
– 2013. – № 4 (61)ю – С. 49–57.
6. Microstructure and phase formation in a rapidly solidified laser-deposited Ni-Cr-B-Si-C
hardfacing alloy / I. Hemmati, V. Ocelik, K. Csach, J.Th.M. Hosson // Metallurgical and Materials
Transactions A. – 2014. – Vol. 45. – P. 878–892.
7. Electron-beam surfacing wear-resistant coatings, reinforced refractory metal's borides / E.
Drobyaz, T. Zimoglyadova, V. Gromov // Applied Mechanics and Materials. – 2015. – Vol. 698:
Electrical Engineering, Energy, Mechanical Engineering, EEM 2014. – P. 419–423.
CLADDING SPECIALTIES OF Ni-Cr-Si-B POWDER COATINGS
Zimogliadova T. A.
, Ph.D. student, e-mail:
zimogliadovatatiana@gmail.comDrobyaz E. A.
, Ph.D. (Engineering), Associate Professor, e-mail:
ekaterina.drobyaz@yandex.ruMul D. O.
, Laboratory assistant, e-mail:
ddariol@yandex.ruKrivezhenko D. S.
, Laboratory assistant, e-mail:
dinylkaa@yandex.ruNovosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian
Federation
Abstract
The influence of the cladding rate on the microhardness parameter of coatings obtained by non-
vacuum electron beam treatment of Ni-Cr-Si-B powder mixtures was investigated. It was found that
the lowest microhardness level (300 HV) was characteristic of the coatings obtained when the
workpiece was moving relative to an electron beam with a speed of 10 mm per second. This
treatment regime allowed obtaining high-quality coatings 2.5 mm in thickness. However, a large
thickness of fusion penetration led to the interfusion of the base metal with a coating material and a
decrease in the concentration of alloying elements in the coating. Reducing the lifetime of the liquid
phase during treatment prevented intensive diffusion processes. Increasing the treatment velocity to
20 mm per second doubled the cladded layer microhardness (up to 650 HV).
Keywords
surface modification, non-vacuum electron beam cladding, structure, microhardness