Young Scientist School – 2016
Школа молодого ученого – 2016 ____________________________________________________________________ 31 664. 2. Wadefalk N., Mellberg A., Angelov I., et al. // IEEE Trans. on Microwave Theor. and Tech. 2003. V. 51. No. 6. P.1705. 3. Pospieszalski M. W., Weinreb S., et. al. // IEEE Trans. on Microwave Theor. and Techn. 1988 V. 36, No. 3. 4. Oukhanski N., Grajcar M., Il’ichev E., et al. // Rev. of Sci. Instrum. 2003. V 74, N 2. P. 1145. 5. Wuensch S., Ortlepp Th., Crocoll E., et al. // IEEE Trans. on Appl. Supercond. 2004. V 19. N. 3. P. 574. 6. Kiviranta M.. // Supercond. Sci. Technol. 2006. V. 19. P. 1297–1302. 7. Thrivikraman T. K., Yuan J., Bardin J.C., et. al. //. IEEE Microwave and Wireless Comps. Lett. 2008. V. 18. N. 7. P. 476. 8. Ivanov B.I., Trgala M., Grajcar M., et. al. Rev. Sci. Instrum. 82, 104705, (2011). 9. Lee J., Cressler J. // IEEE Trans. on. Microwave Theor. and Techn. 2006. V. 54. N. 3. P. 1262–1268. 10. Bardin J.C., Weinreb S.. // IEEE Microwave and Wireless Comps. Lett. 2009. V. 19. N. 6. P. 407. 11. Berger O.. // The International Conference on Compound Semiconductor Manufacturing Technology 1999. http://www.gaas.org/Digests/1999/PDF/59.pdf. 12. Macha P., S.H.W. van der Ploeg, Oelsner G., et. al. Appl. Phys. Lett. 2010. V. 96. 062503. 13. Oelsner G., S.H.W. van der Ploeg, Macha P., et. al. Phys. Rev. B 81, 172505, (2010). 14. Greenberg Ya. S., Izmalkov A., Grajcar M., et.al . Phys. Rev. B 66, 144501, (2002). PREPARATION OF A MEASURING SYSTEM FOR CONDUCTING EXPERIMENTAL MEASUREMENTS OF THE QUBIT-RESONATOR SYSTEM Ivanov B.I. 1 , Ph.D. (Engineering), Associate Professor, e-mail: boris_ivanov@ngs.ru Pitsun D.K. 1 , Post-graduate Student, e-mail: piczun.2010@corp.nstu.ru Il`ichev E.V. 1,2 , D.Sc (Phys.-Math), Professor, e-mail: evgeni.ilichev@leibniz-ipht.de 1 Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation 2 Leibniz Institute of Photonic Technology, 07702 Jena, Germany Abstract We present a measurement system for a superconducting qubit coupled to a coplanar waveguide resonator. The main element of system is a low-noise amplifier. To measure weak microwave signals at subkelvin temperatures, a low-noise cryogenic amplifier was developed. The amplitude- frequency characteristic of the superconductor qubit-coplanar resonator structure is shown. An experimental measuring system has been prepared for conducting studies of superconducting flux qubits. An experimental investigation of the properties of a superconducting flow qubit in a quasi- dispersive regime is carried out. Keywords superconducting qubit, cryogenic amplifier
Made with FlippingBook
RkJQdWJsaXNoZXIy MTk0ODM1